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The existence, stability and propagation properties of defect solitons in two-dimensional optical lattices with a line defect are 

investigated analytically and numerically. When line defects with various defect intensities are introduced into 

two-dimensional optical lattices, defect solitons can exist in different bandgaps. Some unique characteristics show that the 

line defect embedded into two-dimensional optical lattices can profoundly influence the shape, stability and propagation of 

solitons. For a positive defect, the solitons only exist in the semi-infinite gap and cannot be stable in the high power region. 

For a negative defect, the solitons can exist not only in the semi-infinite gap, but also in the first gap;the solitons are stable in 

the moderate power region in the first gap. 
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1. Introduction  

 

Defect solitons are nonlinear defect modes that 

bifurcate out from the linear defect modes, such solitons 

exist in many branches of nonlinear science, including 

biology, photonic crystals, solid state physics, 

Bose-Einstein condensates, nonlinear optics and have 

many potential applications for the all-optical switch [1], 

the routing of optical signal [2], filtering [3], and steering 

of optical beams in lattices [4-6]. In experiments, defect 

solitons in both one-and two-dimensional (2D) photonic 

lattices have been successfully observed [7-17]. In 

particular, the positive and negative defects embedded in 

2D optical lattices can also support various solitons such 

as fundamental, dipole, quadrupole, and vortex modes 

[18-23]. Recently, linear defect modes in 2D optical 

lattices with a negative defect have been reported 

experimentally [24]. Surface defect solitons have been 

experimentally observed in a hexagonal waveguide array 

in Kerr nonlinearity [25], and the existence and stability of 

defect solitons (DSs) in 2D square lattices with focusing 

nonlinearity have been reported [26]. Surface line defect 

gap soliton has only been mentioned, but an in-depth study 

on surface line defect gap soliton is comparatively lacked 

[27]. More recently, DSs in kagome optical lattices, DSs in 

triangular optical lattices, and surface line defect solitons 

(SLDSs) in 2D square optical lattices with defect line have 

been investigated theoretically [28-30]. In this paper, we 

reveal the existence of defect solitons in two-dimensional 

optical lattices with line defect and focusing saturable 

nonlinearity. The stability and propagation properties of 

solitons have been studied analytically and numerically. In 

uniform lattices, solitons exist in the semi-infinite gap, and 

they can be stable in the low power region. For a positive 

defect, the solitons still exist in the semi-infinite gap, and 

they cannot stably transmit in the high power region. For a 

negative defect, solitons can exist in the semi-infinite gap 

and in the first gap, solitons will be stable in the moderate 

power region in the first gap.  

 

 

2. Model 

 

Considering a light beam propagating along z axis and 

illuminating at the middle site of the line defect at the 

surface of two-dimensional optical lattices under focusing 

saturable nonlinearity, light transmission is governed by 

the following nonlinear Schrödinger equation [27,29]: 
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where U is the slowing varying amplitude of the probe 

beam and IL is the intensity profile of two-dimensional 

optical lattices with a defect that described by 

]}128/)(exp[1){(cos)(cos 4222

0 xyxII L     (2)  

Here I0 is the peak intensity of optical lattices. x (in unit of 

D/π) and z (in unit of 2klD
2
/π

2
) is the transverse and 

longitudinal scale, respectively, in which kl=k0ne, k0=2π/λ0 

is the wave-number in vacuum (λ0 is the wavelength in 

vacuum) and ne is the unperturbed refractive index.E0 (in 
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unit of π
2
/( k0

2
 n

4
e D

2
γ33)) is the applied DC field voltage, 

where γ33 is the electrooptical coefficient of the crystal. ε is 

the modulation parameter of defect intensity, respectively. 

We take typical parameters in experimental conditions as 

shown in Refs. [24,27-29]: D=30 μm, d=5 μm, ε1 =0.3, λ0 

=0.5μm, ne=2.3, and γ33=280 pm/V, then x =1,z =1,and E0 

=1 correspond to 9.55 μm, 5.5 mm, and 8.86 V/mm. Other 

parameters are I0 =3, E0 =6. Using the above parameters, 

we obtain the region of the semi-infinite gap as μ≤3.58, 

and the first gap as 4.41≤μ≤5.55 by the plane wave 

expansion method, the bandgap’s structure shown in Fig. 1 

(a). The intensity distributions of composite optical lattices 

with a positive defect (ε=0.5) and a negative defect (ε=-0.5) 

are displayed in Figs. 1(b) and 1(c), respectively.  
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Fig. 1. (Color online.) (a) Band structure of square 

optical lattices. (b) the square optical lattices with a 

positive defect ε = 0.5, (c) the square optical lattices with  

             a negative defect ε =-0.5. 

 

To find the stationary solitons of Eq. (1), we first 

assume that U=u(x,y)exp(−iμz), where μ is the propagation 

constant, and u (x,y) is the real function representing the 

profile of the soliton solution. Substituting the expression 

into Eq. (1) yields the following ordinary differential 

equation: 
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The soliton solutions u(x,y) can be solved numerically 

by a modified square-operator method [31, 32] and the 

power of solitons is defined as dydxuP  









2
. To 

elucidate the stability of defect solitons in two dimensional 

optical lattices with line defect, we search for the 

perturbed solutions of Eq. (1) in the form 

* *( , , ) { ( , ) [ ( , ) ( , )]exp( ) [ ( , ) ( , )] exp( )}exp( )U x y z u x y v x y w x y z v x y w x y z i z       

 (4)  

 

where v(x,y) and w(x,y) are the real and imaginary part of 

infinitesimal perturbations, respectively, with a complex 

instability growth rate δ. The superscript “*” means 

complex conjugation, and v(x,y),w(x,y)<<1. Substituting 

Eq. (4) into Eq. (1) and linearizing, the eigenvalues of the 

coupled equations are obtained as 
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These equations can be solved numerically to obtain the 

perturbation growth rate Re (δ). If Re (δ)>0, solitons are 

linearly unstable. Otherwise, they are linearly stable. 

 

3. Results and discussion  

 

The robustness on propagation of the soliton is tested 

in direct simulations of Eq. (1) by adding a 10% rand noise 

perturbation to the inputted soliton. For a zero defect（ε=0）, 

the power P of DSs versus propagation constant μ in Fig. 

2(a).We can see that DSs only exist in the semi-infinite 

gap; their power gradually decreases with increasing of 

propagation constant μ and terminate at the semi-infinite 

band edges. In the region: μ<1.99, DSs cannot stably exist. 

As an example, the profiles of soliton for μ = 1.51 (point A 

in Fig. 2(a)) at different propagation distances (z=0, 

50,100,150,200) are displayed in Fig. 2(c). In the moderate 

power region, we take μ = 1.8 (point B in Fig. 2(a)) for an 

unstable example. In such case, the soliton profiles of DSs 

at z=0, 50,100,150,200 are plotted in Fig. 2 (d). We can 

find in these figures that DSs can stably propagate for a 

small propagation distance; as the propagation distance z 

is further increased, DSs will obviously jump away from 

the initial site of soliton, and the shape of DSs is not 

centrosymmetric. To confirm the stability characteristics 

of DSs for the case of a zero defect (ε=0).In the low power 

region: 1.99≤ μ≤3.58, DSs can stably propagate. The 

solitons profile of a stable example (μ=2.35 corresponds to 

point C in Fig. 2(a)) is showed in Fig. 3(a). We can see 

that the shape of DSs can preserve its original shape; in the 

lower power region, we take (μ=3.25 corresponds to point 

D in Fig. 2(a)) for a stable example. In such case, the 

profiles of DSs at z=0, 50,100,150,200 are plotted in Fig.3 

(b).We numerically calculate Eq. (5) to obtain the real part 

of perturbation growth rate Re (δ), as shown in Fig. 2(b). 

The Re(δ) is obviously larger than zero in the regions: 

μ<1.99,and DSs cannot stably transmit. However, in the 

region: μ<1.99, their slope of power diagram is negative, 

but Re(δ)>0.So we can conclude that this instability is 

different from the VK instability caused by the positive 

slope of power curve [33-36]. For the negative slope of 

power diagram (dP/dμ<0) and Re(δ) = 0 in the region: 
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1.99≤ μ≤3.58, the stability of DSs is in accordance with 

the VK criterion. 
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Fig. 2. (Color online.) ε = 0. (a) Power versus μ(gray 

regions corresponding to Bloch bands). (b) Re(δ) versus 

μ. (c) Profile (|u|) of DS for μ =1.51 (point A in (a)). Its 

profile (|u|) at z=0, 50,100,150,200. (d) Profile (|u|) of 

DS for μ =1.8(point B in (a)). Its profile (|u|) at z=0, 50, 

100, 150, 200.  The  transverse domain  is (-15,-15) ×  

                   (-15,-15). 
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Fig. 3. (Color online.) ε=0. (a) Profile (|u|) of DS for 

μ=2.35 (point C). Its profile (|u|) at z=0, 50,100,150,200. 

(b) Profile (|u|) of DS for μ=3.25(point D). Its profile (|u|) 

at  z = 0, 50, 100, 150, 200. The  transverse domain is  

                (-15,-15)×(-15,-15). 

 

As a deeper defect considered, we choose a positive 

defect (ε=0.5). Fig. 4(a) presents the power P versus 

propagation constant μ for ε=0.5 at the surface of 

two-dimensional optical lattice with line defect. Note that 

their powers have the same trend with those for a zero 

defect (ε =0), but the power region will be narrower. As 

the increase of defect depth, DSs can still exist in the 

semi-infinite gap. The unstable regions of DSs in the 

semi-infinite gap are μ < 1.99 and 3.02<μ<3.31. As an 

unstable example, we select μ = 1.52 (point A in Fig. 4(a)) 

in the high power region: μ <1.99, DSs profiles at z=0, 

50,100,150,200 are plotted in Fig. 4(c). The characteristics 

of instability in the Fig. 4(c) are the same with those in the 

Fig. 2 (d), but the shape of DSs cannot maintain and lose 

symmetry for propagation constant (μ = 1.52) in the 

unstable range. As another unstable example:μ=1.90 (point 

B in Fig. 4(a)) in the moderate power region, the unstable 

DSs propagations are shown in Fig. 4(d).DSs depart 

upward from the initial site at z=100,and downward for a 

longer propagation distance. As a stable example, the 

profile of DSs for μ =2.56 (point C in Fig. 4(a)) is shown 

in Fig. 5 (a). Fig. 5 (b) shows the unstable DSs profile for 

μ =3.15 (point D in Fig. 4(a)) in the low power. It makes 

clear that DSs can be trapped at the defect site for μ =2.56; 

as the propagation constant μ is increased to 3.15, DSs can 

be trapped at the defect site, but DSs cannot stably 

propagate for a longer distance. According to the relation 

of the Re(δ) and propagation constant μ, as shown in Fig. 

4(b), we obtain the DSs’stable and unstable domains. In 

the region: 1.99≤ μ≤3.02, the slope of power curve and 

Re(δ) = 0,DSs can stably exist ,which accords with the VK 

criterion; while for Re (δ) > 0 and dP/dμ<0 at the region: 

3.02<μ<3.31, DSs cannot stably exist, which is in 

agreement with “anti-VK” criterion. In addition, we also 

find that the light field concentrates together on the defect 

site mainly because a higher light intensity of positive 

defect attracts the light field, decreases the light diffraction 

and changes the stable region of DSs. With the effect of 

positive defect mode, DSs can stably propagate in the low 

power region of the semi-infinite gap.  
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Fig. 4. (Color online.) ε = 0.5. (a) Power versus μ(gray 

regions corresponding to Bloch bands). (b) Re(δ) versus 

μ. (c) Profile (|u|) of DS for μ =1.52 (point A in (a)). Its 

profile (|u|) at z=0, 50,100,150,200. (d) Profile (|u|) of 

DS for μ = 1.90(point B in (a)). Its profile (|u|) at z=0, 50, 

100, 150, 200. The transverse domain is (-15,-15) ×  

                  (-15,-15). 
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Fig. 5. (Color online.) ε=0.5. (a) Profile (|u|) of DS for 

μ=2.56 (point C). Its profile (|u|) at z=0, 50,100,150,200. 

(d) Profile (|u|) of DS for μ=3.15 (point D). Its profile 

(|u|) at z=0, 50,100,150,200.  The transverse domain is  

                (-15,-15)×(-15,-15). 

 

 

As a typical case of the negative defect, we choose ε 

=−0.5, which is the same negative defect depth with these 

that in [26, 28-30]. In such case, the power P of DSs 

versus the propagation constant μ is shown in Fig. 6(a). 

From this figure, DSs cannot only exist in the semi-infinite 

gap but also in the first gap; the power of DSs decreases 

with the increase of propagation constant μ,but abruptly 

change nearby the semi-infinite gap. Unlike the 

characteristics in[26],where DSs can not only exist in the 

semi-infinite gap but also in the first gap, and the DSs 

show different stable and unstable regions in different gaps. 

In [28], in the semi-infinite gap, the stable regions are 

2.42≤μ≤3.33, respectively, where the power of DSs is 

moderate. In [29], the solitons can be stable in the region: 

4.16≤μ≤6.05 in the semi-infinite gap. In [30], the surface 

line defect solitons in the square lattices can be stable in 

the region: 2.18≤μ≤3.13 in the semi-infinite gap. However, 

the DSs in triangular lattices are not stable in the 

semi-infinite gap. Comparing with those, the DSs in 

two-dimensional optical lattice with line defect can exist in 

the semi-infinite gap and in the first gap. The stable 

regions are 2.49≤μ≤3.30 in the semi-infinite gap, but DSs 

are not stable in the regions: μ>2.49 and 3.30<μ<3.58, 

respectively. We choose μ =1.53(point A in Fig. 6(a)) as 

an example of unstable soliton in the high power range, 

whose profiles at z=0, 50,100,150,200 are shown in Fig. 

6(c). In the high power, DSs cannot propagate stably. With 

the increase of propagation distance, DSs drift away from 

the initial place. The shape of DSs will change after this 

process. As another typical unstable example: μ =1.89 

(point B in Fig. 6(a)) in the moderate power. The profiles 

of DSs at the above propagation distances are presented in 

Fig. 6(d), where DSs cannot maintain its profile during 

propagation. When 2.49≤μ≤3.30, the power of DSs is 

linear change with the increasing of propagation constant μ. 

that means DSs in the region can stably propagate. As an 

example, we give the profile of DSs for μ =3.17 (point C 

in Fig. 6(a)) in the low power. DSs at z=0, 50,100,150,200 

can be trapped at the defect site in Fig. 6 (e). Fig. 6 (b) 

shows the change of the Re(δ) with propagation constant μ. 

For Re(δ)>0 in the region: μ>2.49 and 3.30<μ<3.58,the 

DSs cannot stably propagate. In the moderate power 

region: 2.49≤μ≤3.30,the slope of power curve is negative 

and Re(δ)=0, the stability of DSs in this region satisfies 

the VK criterion. In the first gap, the solitons profile of a 

stable example (μ=4.55 corresponds to point D in Fig. 6(a)) 

is showed in Fig. 6(f). We will show the stable DSs 

propagation in this region. We also can find in these 

figures that the shape of stable DSs in the first gap is very 

different from that in the semi-infinite gap. For dP/dμ <0 

in the first gap that is obtained form the gradually 

decreasing power of DSs with the increasing of the 

propagation constant µ, we can conclude that the stability 

of DSs in the firs gap is in accordance with the VK 

criterion. 
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Fig. 6. (Color online.) ε=-0.5. (a) Power versus μ(gray 

regions corresponding to Bloch bands). (b) Re(δ) versus 

μ.(c) Profile (|u|) of DS for μ =1.53 (point A in (a)). Its 

profile (|u|) at z=0, 50,100,150,200. (d) Profile (|u|) of 

DS for μ = 1.89(point B in (a)). Its profile (|u|) at z=0, 

50,100,150,200. (e) Profile (|u|) of DS for μ =3.17 (point 

C in (a)). Its profile (|u|) at z=0, 50,100,150,200.(f) 

Profile (|u|) of DS for μ =4.55 (point D in (a)). Its profile 

(|u|) at z=0, 50,100,150,200. The transverse domain  is  

                 (-15,-15)×(-15,-15). 
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4. Conclusions 

 

In summary, the existence, stability and propagation 

dynamics of DSs in two-dimensional optical lattices with 

line defect with focusing saturable nonlinearity have been 

revealed and investigated numerically. The results show 

that, as the line defects introduced in optical lattices, DSs 

can exist in different gaps, propagate stably and unstably 

in different power regions, and show abundant properties 

upon propagation. For a zero defect, the gap solitons exist 

only in the semi-infinite gap, and can be stable in the low 

power region. For a positive defect, DSs can exist only in 

the semi-infinite gap, and cannot stably transmit in the 

high power region. For a negative defect, DSs cannot only 

exist in the semi-infinite gap but also in the first gap, and 

can stably propagate in the moderate power region in the 

first gap.  
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